Geochemistry and clay mineral studies of Jurassic sedimentary rocks from the Spiti region, Himachal Pradesh, North India

Authors

  • Samar Sultana Aligarh muslim university, Aligarh
  • Shaik Abdul Rashid Aligarh Muslim Univertsity, Aligarh

DOI:

https://doi.org/10.51710/jias.v39iII.251

Keywords:

Black shales, Spiti region, Tethys Himalaya, Geochemistry, Paleo-climate, Paleo weathering.

Abstract

An attempt is made in the present study to unravel the provenance, paleoweathering and paleoclimatic conditions of the Jurassic (Spiti Formation) black shales and sandstones from the Spiti region, Tethys Himalaya, using multi proxy approach.   The sandstones are subarkose in composition and texturally poorly sorted, subrounded to subangular in shape with moderate spheriocity. The range of the chemical index of alteration (CIA) is 55–90, recorded in the black shales strongly suggests moderate to strong chemical weathering conditions in the source area, which in turn reflect fluctuating climatic conditions prevailing during the deposition of these sediments in Jurassic period in the Spiti region. Geochemical studies reveal that shales are enriched in felsic elements (high SiO2, Al2O3, K2O) and depleted in mafic components (Fe2O3 and MgO).The various geochemical discriminant plots and elemental ratios (SiO2/Al2O3, K2O/Al2O3, Al2O3/TiO2, K2O/Na2O, etc.) indicate the rocks to be the product of weathering of felsic rocks. The paleoclimate in the source area seems to be mostly semi-humid. The plot of the samples on the A-CN-K ternary diagram indicates a granitic weathering trend. The X-ray Diffraction studies show that the prominent clay minerals in the Spiti shales are illite, smectite, chlorite, kaolinite and vermiculite along with quartz, muscovite, alkali feldspar, calcite and phosphatic phase.When plotted on the tectonic discrimination diagram, the samples indicate passive margin tectonic setting.

Downloads

Download data is not yet available.

References

Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research, 74(2), 285–297. https://doi.org/10.1306/082803740285

Bagati, T. N. (1990). Lithostratigraphy and facies variation in the Spiti basin (Tethys), Himachal Pradesh, India. Journal of Himalayan Geology, 1(1), 35–47.

Bhargava, O. N. (2008). An updated introduction to the Spiti geology. Journal of the Palaeontological Society of India, 53(2), 113–128.

Bhargava, O. N., & Bassi, U. K. (1998). Geology of Spiti-Kinnaur Himachal Himalaya (Vol. 124). Geological Survey of India.

Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/BF00375292

Blatt, H. (1985). Provenance studies and mudrocks. Journal of Sedimentary Research, 55(1), 69–75.

Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104(1–4), 1–37.

Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3), 181–203.

Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In Provenance of arenites (pp. 333–361). Springer.

Dickinson, W. R., & Suczek, C. A. (1979). Plate Tectonics and Sandstone Compositions1. AAPG Bulletin, 63(12), 2164–2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924.

Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., & Andò, S. (2014). Provenance of passive-margin sand (Southern Africa). The Journal of Geology, 122(1), 17–42.

Hamdan, J., & Bumham, C. P. (1996). The contribution of nutrients from parent material in three deeply weathered soils of Peninsular Malaysia. Geoderma, 74(3–4), 219–233.

Hayashi, K.-I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19), 4115–4137.

Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5), 820–829.

Kanhaiya, S., Singh, B. P., & Singh, S. (2018). Mineralogical and geochemical behavior of sediments solely derived from Bundelkhand granitic complex, central India: Implications to provenance and source rock weathering. Geochemistry International, 56(12), 1245–1262.

Lindsey, D. A. (1999). An evaluation of alternative chemical classifications of sandstones. US Geological Survey.

McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4).

McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In Geological Society of America Special Papers (Vol. 284, pp. 21–40). Geological Society of America. https://doi.org/10.1130/SPE284-p21

Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523–1534.

Nesbitt, H. W., Young, G. M., McLennan, S. M., & Keays, R. R. (1996). Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology, 104(5), 525–542.

Nesbitt, Hw., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717.

Parcha, S. K. (2021). Stratigraphy and the Fossil record of the Palaeozoic and Mesozoic Tethyan sequences of North-western Himalaya. Himalayan Geology, 42(1), 1–68.

Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107(6), 501–504.

Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and Sandstone. Springer-Verlag, Berlin Heidelberg New York. In Pp 618 Pitman WC.

Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5), 635–650.

Schieber, J. (1992). A combined petrographical—Geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geological Magazine, 129(2), 223–237.

Scholle, P. A. (1979). Constituents, Textures, Cements, and Porosities of Sandstones and Associated Rocks. US Geological Survey, Published by the American Association of The American Association of Petroleum Geologists Foundation. Tulsa, Oklahoma, USA 193p.

Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345.

Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution.

Verma, M., Singh, B. P., Srivastava, A., & Mishra, M. (2012). Chemical behavior of suspended sediments in a small river draining out of the Himalaya, Tawi River, northern India: Implications on provenance and weathering. Himal Geol, 33, 1–14.

Von Eynatten, H., Barcelo-Vidal, C., & Pawlowsky-Glahn, V. (2003). Composition and discrimination of sandstones: A statistical evaluation of different analytical methods. Journal of Sedimentary Research, 73(1), 47–57.

Wintsch, R. P., & Kvale, C. M. (1994). Differential mobility of elements in burial diagenesis of siliciclastic rocks. Journal of Sedimentary Research, 64(2a), 349–361.

Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51(9), 2401–2416.

Zuffa, G. G. (1985). Optical analyses of arenites: Influence of methodology on compositional results. In Provenance of arenites (pp. 165–189). Springer.

Published

2022-12-31

How to Cite

Sultana, S. ., & Rashid, S. A. . (2022). Geochemistry and clay mineral studies of Jurassic sedimentary rocks from the Spiti region, Himachal Pradesh, North India. Journal of The Indian Association of Sedimentologists (peer Reviewed), 39(II), 17–29. https://doi.org/10.51710/jias.v39iII.251
Share |