Morphometric evaluation of diverse ripple structures in the Alwar Group at Jamwa Ramgarh in NE Rajasthan, North Delhi Fold Belt, NW India

Authors

  • Dr Asha Saxena University of Rajasthan
  • Prof. M. K. Pandit University of Rajasthan, Jaipur
  • Nirmal Kant Verma University of Rajasthan, Jaipur

DOI:

https://doi.org/10.51710/jias.v41iII.382

Keywords:

Ripples, classification, morphometric analysis, quartz arenite, Alwar Group, NW India

Abstract

In this study we describe a complex set of well-preserved ripple structures from the Alwar Group quartzites (quartz arenite) of Mesoproterozoic Delhi Supergroup in NW India. Exposed in a road section near Jamwa Ramarh (to the east of Jaipur city), a large abundance and diversity in ripple shape, size, wave amplitude and mode of occurrence is unique for a small geographic area. The studied ripples are predominantly symmetric in shape, showing bifurcations, sinuous types, pointed crest with rounded trough, etc. Occasional current and criss-cross, and mega ripples are also present. Their symmetric shape suggests a wave dominant environment. The Vertical Form Index (VFI) values or Ripple Index values below 15 further rule out any possibility of a wind origin for them. The criss-cross and interference ripples point toward the presence of a high energy river system in the vicinity. The statistical analysis of ripple morphological parameters indicates deposition of quartz arenite under shallow water conditions (< 3 m depth). Based on various morphometric analyses, we infer continental shelf with variable depth for the development of these wave ripples. Based on the crest-line criterion, the inferred paleocurrent direction was from the NW.

Downloads

Download data is not yet available.

References

Allen, J.R.L. (1984). Sedimentary Structures, Their Character and Physical Basis; vol. 1. Elsevier Scientific Publ. Co., Amsterdam, 593.

Aspler, L.B., Chiarenzelli, J.R. and Bursey, T.L. (1994). Ripple marks in quartz arenites of the Hurwitz Group, Northwest Territories, Canada; evidence for sedimentation in a vast, early Proterozoic, shallow, fresh-water lake; Journal of Sedimentary Research 64(2a) 282-298.

Baas, J.H. (1999). An empirical model for the development and equilibrium morphology of current ripples in fine sand; Sedimentology 46 123-138.

Baird, D.M. (1962). Ripple marks, Journal of Sedimentary Research 32(2) 332-334.

Bergman, C. (1979). Ripple marks in the Silurian Gotland Sweden; Geologiska Foreningen Stockholm Forrhandlingar.

Bose, U., Mathur, A.K., Sahoo, K.C., Bhattacharya, S., Dutt Krishan Kumar, A.V., Sarkar, S. S., Choudhary, S. and Choudhary, I. (1996). Event stratigraphy and physicochemical characters of B.G.C and associated supracrustals in the south Mewar plains of Rajasthan; J. Geol. Soc. India 47 325–338.

Chang, T.S. and Flemming, B.W. (2013). Ripples in intertidal mud—a conceptual explanation; Geo-Marine Letters 33 449-461.

Cheng, C.H., De Smit, J.C., Fivash, G.S., Hulscher, S.J., Borsje, B.W. and Soetaert, K. (2021). Sediment shell-content diminishes current-driven sand ripple development and migration; Earth Surface Dynamics Discussions 1-26.

Clifton, H.E. (1976). Wave-formed sedimentary structures—a conceptual model; In: R.A. Davis, R.L. Ethington (Editors), Beach and Nearshore Processes. Soc. Econ. Paleontol. Mineral. Spec. Publ. 24 126-148.

Clifton, H.E. and Dangler J R (1984). Wave-formed structures and Paleoenvironmental Reconstruction; Marine Geology 60 165-198.

DR map (2022). District Resource Map of Jaipur District, Geological Survey of India.

De Vleeschouwer, D., Leather, D. and Claeys, P. (2015). Ripple marks indicate mid-Deonian paleo-wind directions in the Orcadian Basin (Orkney Isles Scotland); Palaeogeography, palaeoclimatology, palaeoecology 426 Pages 68-74.

Deb, M. and Thorpe, R.I. (2004). Geochronological constraints in the Precambrian Geology of Rajasthan and their Metallogenic implications In: Deb M. Goodfellow WD (Eds) Sediment-hosted Lead–Zinc Sulphide Deposits; Narosa Publishing House New Delhi 246–263.

Dingler, J.R. (1979). The threshold of grain motion under oscillatory flow in a laboratory wave channel; Journal of Sedimentary Research 49(1) 287-293.

Ewans, O.F. (1942). The relation between the size of waveformed ripple marks, depth of water, and the size of the generating waves; Journal of Sedimentary Petrology 12 31-35.

Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E. and Malone, S. J. (2006). A paleomagnetic and geochronologic study of the Majhgawan Kimberlite India: implications for the age of the Upper Vindhyan Supergroup; Precam. Res. 149 65–75.

Gupta, P., Arora, Y.K., Mathur, R.K., Iqbaluddin, Prashad, B., Sahai, T.N., Sharma, S.B. (1997) Lithostratigraphic map of the Aravalli region southern Rajasthan and northeastern Gujarat; Geol. Surv. India Publ. Jaipur.

Harms, J.C. (1969). Hydraulic significance of some sand ripples; Geological Society of America Bulletin 80(3) 363-396.

Heron, A.M. (1953). Geology of central Rajasthan; Mem. Geol. Surv. India 79 389.

Kindle, E.M. and Bucher, W.H. (1926). Ripple mark and its interpretation; Treatise on Sedimentation 451-483.

Komar, P.D. (1976). Beach Processes and Sedimentation; Prentice-Hall Inc Englewood Cliffs New-Jersey 429p.

McKenzie, N.R., Hughes, N.C., Myrowc, P.M., Banerjee, D.M., Deb, M. and Planavskye, N. J. (2013). New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications; Precambrian Research 238 120–128.

Miller, M.C., Komar, P.D. (1980). Oscillation sand ripples generated by laboratory apparatus Journal of Sedimentary petrology 50 173-182.

Rasmussen, B., Bose, P. K., Sarkar, S., Banerjee, S., Fletcher, I. R. and McNaughton, N.J. (2002). 1.6 Ga U-Pb zircon age for the Chorhat Sandstone lower Vindhyan India: Possible implications for early evolution of animals; Geology 30 103- 106.

Ray, J., Martin, M.W., Veizer, J., Bowring, S.A. (2002). U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup India; Geology 30 131–134.

Romanovski, S.I. (1977). Sedimentologicheskie osnovy litologii [Sedimentological fundamentals of lithology] Nedra Leningrad 408p [in Russian].

Roy, A.B. (1988). Stratigraphic and tectonic framework of the Aravalli Mountain Range In Precambrian of the Aravalli Mountain Rajasthan India Mem. Geol. Soc. India 7 3-31.

Roy, A. B. and Kataria, P. (1999). Precambrian geology of the Aravalli Mountain and neighbourhood: Analytical update of recent studies; Proc. Sem. Geology of Rajasthan: Status and Perspective, MLS University, Udaipur, 1–56.

Roy, A. B. and Kröner, A. (1996). Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton northwestern Indian shield; Geological Magazine 133(3) pp333-342.

Roy, A. B. and Jakhar, S. R. (2002). Geology of Rajasthan (Northwest India) Precambrian to Recent; Scientific Publishers (India) Jodhpur 421p.

Sinha Roy, S. (1984). Precambrian crustal interactions in Rajasthan NW India; Proceeding of Seminar on Crustal Evolution of Indian Shield and its Bearing on Metallogeny, 84-91.

Sinha-Roy, S., Malhotra, G. and Mohanty, M. (1998). Geology of Rajasthan; Geol. Soc. India Bangalore 278p.

Tanner, W.F. (1967). Ripple mark indices and their uses; Sedimentology 9 89-104.

Tanner, W.F. (1970). Triassic-Jurassic lakes in New Mexico; The Mountain Geologist.

Tanner, W.F. (1971). Numerical estimates of ancient waves water depth and fetch; Sedimentology 16 71-88.

Tanner, L. H. (1982). Description interpretation and geologic history of the Peru Sand outcrop in Catoosa Oklahoma, 344-355.

Tricker, A. R. (1965). Bores Breakers Waves and Wakes; Elsevier New York NY 250 p.

Wang, W., Cawood, P.A., Pandit, M.K., Zhou, M. F. and Chen, W. T. (2017). Zircon U-Pb age and Hf isotope evidence for Eoarchean crustal remnant and crustal growth and reworking respond to supercontinental cycles in NW India; Jour. Geol. Soc. 174 759 -772.

Wiedenbeck, M., Goswami, J.N., Roy, A. B. (1996). Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga: an ion microprobe zircon study; Chemical Geology 129(3-4) 325-340.

Downloads

Published

2024-12-31

How to Cite

Dr Asha Saxena, Prof. M. K. Pandit, & Nirmal Kant Verma. (2024). Morphometric evaluation of diverse ripple structures in the Alwar Group at Jamwa Ramgarh in NE Rajasthan, North Delhi Fold Belt, NW India. Journal of The Indian Association of Sedimentologists (peer Reviewed), 41(II), 40–51. https://doi.org/10.51710/jias.v41iII.382
Share |