GEOCHEMICAL COMPARISON OF QUARTZITES OF THE ARCHAEAN BASEMENT COMPLEXES OF THE ARAVALLI AND BUNDELKHAND BLOCKS OF THE NORTH INDIAN SHIELD: IMPLICATION FOR PROVENANCE COMPOSITION AND CRUSTAL EVOLUTION

Authors

  • Ausaf Raza Geological Survey of India
  • M.E.A Mondal

Keywords:

Bundelkhand, Aravalli, Metasediments, Geochemistry, Provinance

Abstract

ABSTRACT

The petrography as well as major, trace including rare earth element (REE) compositions of Archaean quartzite of the Aravalli and Bundelkhand blocks of the North Indian Craton (NIC) of the Indian shield are compared and investigated to assess the influence of sorting and recycling, source area weathering and provenance composition. The inferences drawn are used to determine the composition and evolution of continental crust of NIC during the early part of the earth history. Petrological evidence suggests derivation of detritus of both of the sedimentary sequences from stable part of the craton. Geochemically both quartzites are distinguished as litharenite-arkose. The quartzites are not mature as their SiO2/Al2O3 ratio remains < 10.  CIA (chemical index of alteration) and CIW (chemical index of weathering) values and Th/U ratios indicate low to moderate degree of chemical weathering in the source area of studied rocks, which reflect high erosion rate coupled with short distance and rapid sedimentation in a tectonically active basin. Provenance characterization, based on major and trace elements including REE characteristics suggest the derivation of detritus of both of these quartzites from source terrains comprising TTG, (Tonalite-trondhjemite-granodiorite) and granite with minor mafic rocks in different proportions. Provenance modeling indicates that the quartzites of the Aravalli Craton can be best modeled with a mixture having 50% TTG, 40% granite and 10% mafic rocks. On the other hand the quartzites of the Bundelkhand Craton were derived from a source terrain comprising 80% TTG, 10% granite and 10% mafic rocks. TTG and granite-derived material with smaller amount of mafic-derived debris explains the geochemical characteristics of these quartzites. It is inferred that these sedimentary sequences were probably deposited on the margin of young cratons consisting newly accreted TTG and granite bodies. Comparatively higher amount of TTG and lesser amount of granites in the source terrain of Bundelkhand Craton samples indicates more primitive nature of continental crust in the Bundelkhand Craton in comparison to the Aravalli Craton which had comparatively more evolved crust at the time of sedimentation during the Archaean.

Downloads

Download data is not yet available.

References

REFERENCES
Absar, N., Raza, M., Roy, M., Naqvi, S.M., and Roy, A.K., (2009). Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group: Precambrian Research, v. 168, p. 313–329. doi:10.1016/j.precamres.2008.11.001.
Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., Ramasamy, S., (2004). Geochemistry of sandstones from the upper Miocene KudankulamFormation, southern India: Implications for provenance, weathering,and tectonic setting: Journal of Sedimentary Research, 74(2), 285-297.
Basu, A.K., (1986). Geology in parts of Bundelkhand granite massif, central India. Rec. Geol. Surv. India, v. 117 (part-2), pp. 61-124.
Basu, A.K., (2007). Role of Bundelkhand granite massif and the Son-Narmada megafault in Precambrian crustal evolution and tectonism in central and western India: Journal of the Geological Society of India, v. 70, p. 745–770.
Blatt, H., G. Middleton, and R. Murray, (1980). Origin of Sedimentary Rocks. Englewood Cliffs, N.J.: Prentice Hall, 782 p.
Bhatia, M.R. and Crook, K.A.W., (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineral. Petrol., 92, 181-193.
Cann, J.R., (1970). Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth Planet Sci. Lett., 10, 7-11.
Condie, K.C.,(1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., 104, 1–37.
Condie, K.C., (2001), Mantle Plumes and Their Record in Earth History. Oxford, UK: Cambridge Univ. Press. 306 p.
Condie K.C. and Wronkiewicz D.J. (1990) The Cr/Th ratio in Precambrian pelites from Kaapvaal craton as an index of craton evolution. Earth Planet. Sci. Lett. 97, 256-267.
Cullers, R.L., (2000). The geochemistry of shales, siltstones, and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181–203.
Drummand, M. S., Defant, M. J. (1990) A mode for trondhjemite-tonalite –dacite genesis and crustal growth via slab melting : Archaen to modern comparison. Jour. Geophys. Res. 95 B, 21503- 21521.
Fedo C. M., Nesbitt, H. W. and Young, G. M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance. Geology 23, 921-924
Fedo, C.M., Young, G.M., Nesbitt, H.W. and Hanchar, J.M.,(1997). Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precamb. Res., 84, 17-36.
Gao, S. and Wedepohl, K. H., (1995). The negative Eu anomaly in Archean sedimentary rocks: implications for decomposition, age and importance of their granitic sources. Earth Planet. Sci. Lett., 133, 81–94.
Gopalan, K., Macdougall, J. D., Roy, A. B. and Murali, A. V. (1990) Sm-Nd evidences for 3.3 Ga old rocks in Rajasthan, northwestern India. Precamb. Res. 48, pp. 287-297.
Guha, D.B., (2007). Rocks of Aravalli and Delhi Supergroup. Current science, 2007 Vol.93, issue 1 pp 10-11.
Hayashi, K., Fujisawa, H., Holland, H., Ohmoto, H., (1997). Geochemistry of ˜ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta., 61, 4115-4137.
Herron, M. M., (1988). Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Petrology, v. 58, no.5, p. 820- 829
Hessler, A. M. and Lowe, D. R. (2006) Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precamb. Res. 151, 185-210.
Hofmann, A.W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90: 297-314. doi: 10.1016/0012-821X(88)90132-X
Hofmann, A., (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precamb. Res. 143-23-49.
Holland, H. D. (1978). The Chemistry of the Atmosphere and the Oceans. John Wiley, New York, 389 pp.
Huang, X. L., Niu, Y., Xu, Y. G., Yang, J. Q., Zhong, J. W. , (2010). Geochemistry of TTG and TTG- like gneisses from Lushan- Taihua Complex in the southern North China craton: implications for late Archaean crustal accretion. Precamb. Res. V. 182, pp. 43-56.
Humpris, S.E., (1984). The mobility of rare earth elements in the crust. In: Henderson P. (Edit.) Rare Earth Element Geochemistry. Amster. Elsev., 317 -342.
Johnsson, M.J., (1993). The system controlling the composition of clastic sediments. In: Processes Controlling the Composition of Clastic Sediments (Eds. M.J. Johnsson and A. Basu), Geol. Soc. Amer. Spec. Paper., 284, 1–19.
Kasting, J., (1993). Earth’s early atmosphere Science, 259, 920-926.
Lahtinen, R., (2000). Archaean-Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Precamb.Res., 104, 147-174.
Malviya, V.P., Arima, M., Pati, J.K. and Kaneko, Y., (2004). First report of metamorphosed basaltic pillow lava from central part of Bundelkhand craton, India: An Island arc setting of possible Late Archaean age. Gond. Res. v. 7, pp. 1338-1340.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1-24.
McLennan, S.M., (1989). Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. Reviews in Mineralogy., 21, 169-200.
McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N., (1993). Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson M.J. and Basu A,(eds.) Processes controlling the composition of Clastic sediments. Geol. Soc. Amer. Spec. Paper., 284, 21-40.
McLennan, S.M., Hemming, S., Taylor, S.R. and Erikson, K.A., (1995). Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks southwestern North America. Geochim. Cosmochim. Acta., 59, 1153-1173.
Mohanty, M. and Guha, D. B., (1995), Lithotectonic stratigraphy of dismembered greenstone sequence of the Mangalwar Complex around Lawa-Sardargarh and Parasali areas, Rajsamand district, Rajasthan. Memoir, Geol. Soc. India, no. 31, pp. 141–162.
Mondal, M.E.A., Goswami, J.N., Deomurari, M.P., Sharma, K.K., (2002). Ion microprobe 207Pb/206Pb ages of zircon from the Bundelkhand massif, northern India: implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precamb. Res., v. 117, pp. 85-100.
Mondal, M.E.A. and Zainuddin, S.M., (1996). Evolution of Archean-Palaeoproterozoic Bundelkhand massif, Central India-evidence from granitoid geochemistry. Terra Nova, v. 8, pp. 532-539.
Naqvi, S. M., Condie, K. C., and Allen, P., (1983). Geochemistry of some unusual early Archaean sediments from Dharwar craton, India. Precamb. Res., 22(1), 125-147.
Naqvi, S. M. Sawker, R. H., Subba Rao D. V., Govil, P. K., and Gnaneswar Rao (1988). Geology, Geochemistry and tectonic setting of Archaean greywackes from Karnataka Nucleus, India. Precamb. Res. 39, 193- 216
Naqvi, S.M., Uday Raj, B., Subba Rao, D.V., Manikyamba C., Nirmal Charan, S., Balaram, V., Sarma, D.S., (2002). Geology and geochemistry of arenite-quartzwacke from the Late Archean Sandur schist belt - implications for provenance and accretion processes. Precamb.Res., 114, 177-197.
Nesbitt, H. W., (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature., 279, 206–210.
Nesbitt, H.W., Young, G.M., (1982). Early Proterozoic climates and plate motion inferred from major element chemistry of lutites. Nature., 299, 715-717.
Pettijohn, F.J., Potter, P.E. and Siever, R., (1972). Sand and Sandstone (Berlin: Springer-Verlag)., 241p.
Prasad, M.H., Hakim, A., and Krishna Rao, B., (1999). Metavolcanic and Metasedimentary inclusions in the Bundelkhand Granitic Complex in Tikamgarh district, MP: Journal of the Geological Society of India, v. 54, p. 359–368.
Purevjav, N and Barry Roser,B., (2013). Geochemistry of Silurian–Carboniferous sedimentary rocks of the Ulaanbaatarterrane, Hangay–Hentey belt, central Mongolia: Provenance, paleoweathering,tectonic setting, and relationship with the neighbouring Tsetserleg terrane. Chemie der Erde 73 (2013) 481– 493.
Ramakrishnan, M., and Vaidyanadhan, R., (2010). Geology of India, v. 1: Bangalore, Geological Society of India, 556 p.
Raza, A. and Mondal, M.E.A., (2018). Geochemistry of the Archaean metasedimentary rocks of the Bundelkhand Mauranipur-Babina greenstone belt, central India: Implications for provenance characteristics. Jour. Indian Association of Sedimentologists, Vol. 35, No. 1 (2018), pp.57-76
Raza M., Bhardwaj V.R., Ahmad A.H.M., Mondal, M.E.A., Khan A. & Khan M. S. (2010a). Provenance and weathering history of Archaean Naharmagra quartzite of Aravalli craton, NW Indian Shield Petrographic and geochemical evidence. Geochemical journal 44, 331-345.
Raza, M., Bhardwaj, V.R., Dayal, A.M., Rais, S and Khan, A., (2010b). Geochemistry of lower Vindhyan Clastic sedimentary rocks of Northwestern Indian shield: Implications for composition and weathering history of Proterozoic continental crust. Jour. Asian Earth. Sciences, 39, 51-61.
Roddaz, M., Debat, P. and Nikiema, S., (2007). Geochemistry of upper Birimian sediments (major and trace elements and Nd-Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust. Precamb. Res. 159, 197-211.
Roddaz, M., Viers, J., Brusset, S., Baby, P., and Herail, G., (2006). Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem. Geol. 226, 31-65.
Rollinson, H. R. (1993). Using Geochemical data: Evaluation, Presentation, Interprtation. Longman Singapur Publishers (Pte) Ltd. Singapur, pp 352
Roy, A.B., Kataria, P., Kumar, S. and Laul, V. (2000) Tectonic study of the Archaean Greenstone association from Rakhiawal, east of Udaipur, southern Rajasthan. In: K.C. Gyani and P. Kataria (eds.) Proc. National Seminar Tectonomagmatism, Geochemistry and metamorphism of Precambrian Terrains Sukhadia University, Department of Geology, Udaipur, 143-157.
Roy, A. B. and Jakhar, S. R. (2002) Geology of Rajasthan (Northwestern India), Precambrian to Recent. Scientific Publication, Jodhpur, India, 421 p
Singh, V. K. and Slabunov, Alexendra, (2014). The Central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: geology, composition, and geochronology of supracrustal rocks, Inter. Gel. Rev. doi.org/ 10.1080/ 00206814.2014.919613, 1-16.
Sinha-Roy, S. (1985) Granite-greenstone sequence and geotectonic development of SE Rajasthan.In: Proc. Symp. Megastructures and paleotectonic and their role as a guide to ore mineralization. Bull. Geol. Min. Met. Soc. India, 53, 115-123.
Sugitani, K., Yamashita, F., Nagaoka, T., Yamamota, K. Muniami, M., Munura, K. and Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archaean clastic sedimentary rocks of Mt. Goldsworthy, Pilbara craton, western Australia: Evidence for early evolution of continental crust and hydrothermal alteration. Precambrian. Research. 147, 124-147
Sugitani, K., Horiuchi, Y., Adachi, M., and Sugisaki, R., (1996). Anomalously low Al2O3/TiO2 values of Archaean cherts from the Pilbara Block. Western Australia – possible evidence of extensive chemical weathering on the early earth: Precamb. Res., 80, 49-76.
Taylor S. R. and McLennan, S. M., (1985). The Continental Crust: Its Composition and evolution, London, Blackwell., 311p
Tran, H.T., Ansdell, K., Bethune, K., Watters, B. and Ashton, K., (2003). Nd isotope and geochemical constraints on the depositional setting of Paleoproterozoic metasedimentary rocks along the margin of the Archean Hearne Craton, Saskatchewan, Canada. Precamb. Res, 123, 1-28.
Van Boening, A. M. and Nabelek, P.I., (2008). Petrogenesis and tectonic implications of Paleoproterozoic mafic rocks in the Black Hills, South Dakota. Precamb. Res.v.167, pp. 363-376.
Upadhyaya,R Sharma, B.L Jr., Sharma, B. L Sr., and Roy, A. B. (1992) Remnants of greenstone sequence from the Archaean rocks of Rajasthan. Curr. Sc 63, 87-92.
Wronkiewicz D.J. and Condie, K.C., (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401-2416.
Yamammoto, K., sugisaki R. and Arai, F. (1986). Chemical aspects of alteration of acidic tuffs and their application to siliceous deposits. Chem.Geol. 55, 61-76

Published

2020-06-30

How to Cite

Raza, A., & Mondal, M. (2020). GEOCHEMICAL COMPARISON OF QUARTZITES OF THE ARCHAEAN BASEMENT COMPLEXES OF THE ARAVALLI AND BUNDELKHAND BLOCKS OF THE NORTH INDIAN SHIELD: IMPLICATION FOR PROVENANCE COMPOSITION AND CRUSTAL EVOLUTION. Journal of The Indian Association of Sedimentologists (peer Reviewed), 37(1), 45–67. Retrieved from http://journal.indiansedimentologists.com/ojs/index.php/1/article/view/108
Share |